THE PICO-LIGHT

Introduction

The objective of the Pico-Light design is to produce a small, light teardrop trailer suitable for the smallest tow vehicle including large motorcycles. This note describes and illustrates the design - working drawings follow after the text.

To get the minimum weight, the trailer is built no stronger than it needs to be to do its job and uses only single-skin construction throughout. The trailer will serve its intended purpose well, but is not suitable for other uses - if you want to also use your trailer to, say, collect scrap batteries for recycling, pick another design.

To get the minimum size, the trailer has been designed to be low, no more than is needed to enable the occupants to sit up with their heads nearly touching the roof and to be not much longer than the bed length.

To fit in two people in bearable comfort, the width has been kept at the traditional teardrop four feet - if the trailer is intended only for solo use, the body width could be reduced.

There is no galley and no hatch at the back, to save both weight and size. If a full galley is wanted, it can be built it into a traditional camp kitchen box that sits inside the cabin during towing and is taken out at the camp site.

There are no lockers inside - that would need a bigger trailer. But there is a large shelf over the sleepers' legs that provides somewhere to store clothes, etc while sleeping.

The body sides hang below the floor just for the look of it and styled (or over-styled!) fenders are used to give the little 8 " wheels some character. Ready-made fenders can be used and if so it would make sense to eliminate the overhang on the body sides.

Warning: this trailer design has not been prototyped and prospective builders need to satisfy themselves that it is large enough for their needs (and their claustrophobia...). This design is one size smaller than even a normal 8ft teardrop. Building a mock-up of the sleeping space in cardboard and trying it out would be sensible.

This design was inspired by the Eis Piccolo made in Germany in the 1950s and that explains the 'Pico' in its name. Some may also recognise that Pico- is the prefix for a very small measure - it means 10^{-12}.

The free Generic Benroy plans on the Teardrop and Tiny Travel Trailers forum (http://www.mikenchell.com/forums) can be used for the many details of building a teardrop trailer.

The body is self-supporting on the frame and to do this it must be well built - in particular all joints must be glued with a high quality glue, preferably epoxy. Mechanical fasteners alone, such as nails or screws, are not a satisfactory alternative.

The completed trailer weighs approximately 280 lb - a detailed weight estimate is included at the end of the drawings.

Chassis

The aim of the chassis is to be light and strong. It is suitable for this design but is not necessarily suitable for other heavier designs.

2 "xl"xl4ga rectangular box is used for the main rails of the frame. This frame design passes the Australian trailer rules for a utility trailer of 630lb, so that is probably sufficient for a 1200 lb teardrop which will see much less abuse.

There is sufficient spare capacity in the frame design to allow the tongue to be lengthened if required up to 24 " longer than drawn - this can be down either by lengthening the A-frame rails (preferred) or by using a longer single 2" $\times 2$ " tongue tube.

The I4ga tube requires an expert welder to make good joints. For the less skilled welder, switching to the more common I Iga tube would be a safe alternative and would only cost IOlb extra weight.

A single 2 " $\times 2$ " x I Iga tongue right back to the axle cross-member can be used instead of the A-frame but this is not as stiff and should not be made any longer than drawn, to avoid snaking issues.

To save weight, separate Flexiride half-axles of 425 lb capacity per pair are used. These are unusual in the US but are the standard type for small trailers in Europe. Aligning the two half-axles to the frame needs to be done with a little care, but it does not require either a tame rocket scientist or automotive alignment equipment. The simple technique is to bolt the half-axles to their mounting plates, clamp the half-axles to a straight beam, align the joined half-axles and tack-weld the mounting plates to the axle cross-member. Remove the half-axles before final welding the mounting plates.

The body is supported by mounting plates under the front frame of the floor, and by two 12 " long angles under the sidewalls. For a body built with care, this is quite sufficient support. A few $3 / 8$ " hold-down bolts with big washers are all that is needed to join the body to the frame.

A standard trailer jack is overkill for this trailer which has only 40 lb weight on the hitch, so a custom-made "propstand" (the British word for it) is used which weighs only 3.5 lb in total. This consists of two square
tubes with a series of holes through the sides that allow a I/4" pin (with a R-clip or similar locking feature) to provide height adjustment in I" steps.

Floor

The floor is made of $3 / 8$ " ply with mostly Ix 2 framing underneath. This is quite sufficient for a trailer floor which will only be sat or laid on. It is not sufficiently strong to be walked on, but then it doesn't need to be.

The floor is framed as shown and then the front and back chamfers are cut - the floor could be built as drawn with the chamfers left uncut until after the sidewalls have been trial-fitted, to check the floor length.

Where the floor frame cross-members pass over the frame rails, add $1 / 8^{\prime \prime}$ packing pieces (the thickness of the steel mounting plates) so the floor is supported by the frame rails.

Making the front cross-member from hardwood would be sensible as this carries the A-frame load.

Sidewalls

The sidewalls are I/4" ply with mostly Ix2 framing. Up to 4 " of sidewall hangs down below the floor (unframed) so a doubler can be added to the bottom edge of the sidewall if extra durability is wanted.

The shape of the sidewall is given by the geometry drawings described in the next section. All dimensions are measured from a datum point in the bottom rear corner - this datum point is lost when the profile is cut, so make all measurements (including door opening and internals) before cutting the profile. Alternatively, mark an extra datum, say 12 " up and forward of the original datum to use after the profile is cut.

The two rear-most frames both connect with a roof spar, so their top ends are cut to fit around the spar.

The bottom rear corners of the door would interfere with the fender, so these corners are chamfered.

The curved frame over the door opening can be cut from a Ix6 or from two layers of 3/8" ply. The same applies to the top frame of the door, which also gets extra framing where the door latch will be mounted.

The door opening shown is to suit a conventional teardrop door where the seal is made against a T moulding fixed to the door. Alternatively the door opening can be made I/2" bigger all round and a router
used to cut out rebates where weather seals can work between the sidewall and door framing, as shown in the drawings.

Geometry

The shape of the sidewall is given in the geometry drawings. All curves on the trailer (except for the fender) are circular arcs, so two alternative ways of laying out the shape are given:

- the position and radius of each arc is given and these can be drawn out on the plywood using either string-and-pencil or a batten used as a beam compass; or
- the measurements are given to mark out the profile on a 4" grid and then draw the curves using a flexible batten to 'join the dots'.

To repeat: all dimensions are measured from a datum point in the bottom rear corner - this datum point is lost when the profile is cut, so make all measurements (including door opening and internals) before cutting the profile. Alternatively, mark an extra datum, say 12" up and forward of the original datum to use after the profile is cut.

Note that the bottom edge of the sidewall never reaches the base line - it would do so where it is cut away for the suspension.

Roof Spars and Shelf

All the roof spars are 1×2, except for a 1×3 above the shelf where the roof skin will be jointed.

The spars over the door are positioned I4" apart so that a standard roof vent can be added here if required - to provide satisfactory ventilation in such a small trailer, this would be a good idea. Elsewhere the spars are placed at approximately 12" spacing.

A 1×2 spar holds up the front edge of the $1 / 4$ " shelf - by having the spar above the shelf, it will hold small items in place during towing. The back of the shelf rests on a roof spar: the sides of the shelf are epoxyfilleted to the sidewalls.

The shelf should be trial-fitted at this stage but not fixed in place, in order to leave good access for making the skin-sidewall joints.

Clearly, the shelf is not intended to carry heavy loads - it could be increased to $3 / 8$ " ply if desired, at a 4 lb weight penalty, though it will still only be suitable for lighter loads.

Roof Skin

The roof skin is $1 / 8^{\prime \prime}$ plywood with a second layer over the lower front to resist stone impacts. A complete 4 ftx 8 ft sheet covers the front as far back as a butt join centred on the Ix3 roof spar: a half-sheet completes the rest of the roof.

It is preferable to make the butt joint (and the top of the stone guard joint) with epoxy glue for long term durability.

The roof skin is connected to the sidewalls by internal epoxy fillets for the best strength with no weight penalty - boatbuilding web sites will provide information about this technique. The easiest way to do this, after the roof skin has been glued in place, would be to turn the body onto one sidewall, apply the fillet to one joint downhand and the next day turn the body over to make the other joint.

For the ultimate in durability, light glass tape/cloth could be applied to the external roof corner and/or the butt joint with epoxy resin.

As an alternative to epoxy filleting the skin-sidewall joints, framing strips or framing blocks could be added around the edge of the sidewall. This is both a heavier and a weaker method but would be satisfactory.

If a roof vent is to be fitted, strips cut from 2×2 need to be fitted on top of the roof skin around the vent opening to provide a flat base.

Fenders

The fenders are made from I/8" ply skin, with a I/4" ply outer wall and $3 / 8^{\prime \prime}$ ply inner mounting flange. All joints are reinforced with epoxy fillets after gluing - making the fenders would be good practice for epoxy filleting novice before doing the skin-sidewall joint of the body.

The fenders could have a second layer of $\mathrm{I} / 8$ " ply to reinforce them, for a 2 lb weight penalty. Alternatively the inside of the fender could be lined in fibreglass.

It would be easier to maintain the fender shape if the bottom is left on the inner and outer walls until they are assembled - this provides a flat base to keep the two sides in line with each other.

The fender shape has not been tested so it would be sensible to trial-fit the fenders and test that the wheel can be removed - if necessary, the cutout in the outer wall may have to be increased. The fenders are bolted through the mounting flange and the sidewall - using fender washers!

The styled fender is intended to add some character to the small wheels but in truth ready-made fenders for 8 " wheels would be lighter, stronger and have lower drag. If ready-made fenders are used, the sidewall 'underhangs' below the floor don't make much sense and should be left off.

Outfitting/Finishing

If insulation is required, $3 / 4$ " rigid foam should be glued inside the sidewalls between framing and to the roof skin between roof spars. A cosmetic fabric can then be glued/stapled over the foam and framing/spars.

The door opening shown suits a standard 12 "xI8" crank-out square-corner window.
Paint or varnish over epoxy would be the most durable lightweight finish, but other paint systems can be used as wished.

If an aluminium finish is required, the sides and roof can be skinned in 0.032" aluminium with trim strips at edges and corners, but this carries a substantial 47lb weight penalty.

Nets with elasticated edges strung between the roof spars over the front of the bed would provide valuable extra storage for personal items while sleeping, for little extra weight.

Ideally the mattress would have chamfered front and back edges to fit the body and would be in two or three pieces hemmed together (like a Z-bed) so it can be folded back under the shelf and the floor of the trailer used to carry items when being towed. It might be a good idea to make a lightweight ply box with waterproof lid that can fit through the doors for towing and be stored under the trailer when sleeping this could be another ideal project to practice epoxy filleting on.

Feedback

Any feedback or build photos from builders of this trailer will be most welcome. Please contact the designer at the email address below.

Andrew Gibbens
angib@blueyonder.co.uk

PICO-LIGHT - EXTERIOR - SCALE 1:24

PICO-LIGHT - INTERIOR - SCALE 1:12

PICO-LIGHT - CHASSIS - SCALE 1:24

PICO-LIGHT - CHASSIS - SCALE 1:12

PICO-LIGHT - CHASSIS - SCALE 1:4

PICO-LIGHT - CHASSIS - SCALE 1:12 (Details 1:2)

Basic Door Opening as shown on Plans

Alternative Door Opening using routered framing

Tranverse Section through Bottom of Sidewall

PICO-LIGHT - DOOR OPENING DETAIL - SCALE 1:2

Note: Shelf cut and trial-fitted before roof skin fitted but only fitted permanently after roof skin is bonded.

Wall-Roof Joint Detail 1:2

 butt-jointed in middle of 1×3 roof spar \longrightarrow panel approx 89"

Perimeter of rear panel approx 46-1/2"

in place until after skin is bonded on.

PICO-LIGHT - PROFILE - SCALE 1:12

PICO-LIGHT - PROFILE - SCALE 1:12

Note: Mark all sidewall items (incl framing and internals) before cutting perimeter.

PICO-LIGHT - PROFILE - SCALE 1:4

PICO-LIGHT - PROFILE - SCALE 1:4

PICO-LIGHT WEIGHT ESTIMATE

Note: Zero datum for LCG and Moment measurement is CAD zero - rear end of body

Summary		Weight total lb	from rear in	Moment total lb-in	Optional Items		Weight total lb	LCG from in	Moment total lb-in
CHASSIS									
Frame		35		2385	Aluminium skin		43		2024
Components		60		2775	Margin (sealant, fasteners)	10\%	4		202
Subtotal		94	54.9	5159			47		2226
Margin (paint, weld, fasteners)	5\%	5		258					
Total		99		5417	Foam insulation (top \& sides)		11		502
					Margin (glue, fabric)	10\%	1		50
BODY							12		553
Floor		41		1631					
Sides		30		1400	11 ga frame tubes		9.9		642
Doors		12		669	Margin (paint, weld, fasteners)	5\%	-		32
Roof		34		1482			10		674
Shelf		10		300					
Fenders		9		342	Sidewall edge reinforcement		0.7		26
Subtotal		136	42.9	5823	Margin (glue, fasteners)	5\%	0		1
Margin (paint, glue,	5\%	7		291			1		27
fasteners, minor fittings)		142		6114					
FITTINGS									
Body Fittings		18		913					
Fit-out Items		22		896					
Subtotal		40	45.2	1809					
Margin (growth)	10\%	4		181					
		44		1990					
Optional items		0		0					
Unladen Weight		281	47.5	13340					
Longl position of wheels			38.0						
Longl position of hitch			115.5						
\%age of weight on hitch			12.2\%						
Weight on hitch		34							
Weight on axle		247							

WEIGHT ESTIMATE DETAIL CALCS

CHASSIS	Spec	No	Units	Qty units	Unit Wt lb/unit	Wt each lb	Weight lb	LCG, inch from rear	Moment lb-in	
Frame										
Axle cross-member	2"x1"x14ga	1	in	48	0.1333	6.4	6.4	41.5	266	
A-frame	2"x1"x14ga	2	in	66	0.1333	8.8	17.6	73.3	1290	
Coupler mount	2"x2"x11ga	1	in	10	0.2450	2.5	2.5	107.5	263	
Sidewall mounts	1.5 "x1.5"x1/8" angle	2	in	12	0.1025	1.2	2.5	41	101	
Axle mounting plates	1/8" plate	2	in2	19.25	0.0354	0.7	1.4	41.5	57	
Front mounting plate	1/8" plate	2	in2	10	0.0354	0.4	0.7	71.5	51	
Propstand socket	2"x2"x11ga	1	in	4	0.2450	1.0	1.0	101.5	99	
Propstand tube	1.5 "x1.5"x14ga	1	in	18	0.1333	2.4	2.4	101.5	244	
Propstand foot	1/8" plate	1	in2	4	0.0354	0.1	0.1	101.5	14	
Note: 11ga = 0.120",	$4 \mathrm{ga}=0.083 "$									2385
Components										
Wheels/tyres	4.80x8, B, 4x4	2	ea			11.0	22.0	38	836	
Half-axles	Flexiride 425lb, pair	1	pr			13.0	13.0	40.5	527	
Hubs	4×4	2	ea			9.0	18.0	38	684	
Coupler	Straight tongue	1	ea			4.5	4.5	112	504	
Safety chains	est	2	ea			1.0	2.0	112	224	
										2775
BODY										
Floor										
Plywood	3/8" ply	1	in2	3344	0.00881	29.5	29.5	38.9	1146	
Trans frame rear	ex 1×3	1	in	47.5	0.02799	1.3	1.3	5.1	7	
Trans frames mid	1×2	4	in	44.5	0.02441	1.1	4.3	44.3	193	
Trans frame front	ex 1×4	1	in	47.5	0.04752	2.3	2.3	73	165	
Side frames	1×2	2	in	64.5	0.02441	1.6	3.1	38.3	121	
										1631
Sides										
Side (excl door)	1/4" ply	2	in2	1949	0.00588	11.5	22.9	44.3	1015	
Rear intermed frame	1x2	2	in	31.0	0.02441	0.8	1.5	23.3	35	
Rear door frame	1×2	2	in	38.0	0.02441	0.9	1.9	45.3	84	
Door corner frame	1×2	2	in	4.1	0.02441	0.1	0.2	47.3	9	
Bottom door frame	1x2	2	in	21.3	0.02441	0.5	1.0	59.3	62	
Top door frame	2@3/8 ply	2	in2	37.9	0.01763	0.7	1.3	58.5	78	
Front door frame	1x2	2	in	33.8	0.02441	0.8	1.7	70.8	117	
										1400

Doors											
Door	1/4" ply	2	in	577	0.00588	3.4	6.8		56.6	384	
Rear door frame	1x2	2	in	29.1	0.02441	0.7	1.4		46.9	67	
Lock block	1x2	2	in	5.0	0.02441	0.1	0.2		48.3	12	
Door corner frame	1x2	2	in	3.9	0.02441	0.1	0.2		38.1	7	
Bottom door frame	1x2	2	in	19.7	0.02441	0.5	1.0		59.3	57	
Top door frame	2@3/8 ply	2	in2	23.5	0.01763	0.4	0.8		58.5	48	
Front door frame	1x2	2	in	27.8	0.02441	0.7	1.4		69.1	94	
								11.8			669
Roof											
Roof skin	1/8" ply	1	in2	6475	0.00294	19.0	19.0		46	875	
Stone guard	1/8" ply	1	in2	960	0.00294	2.8	2.8		38	107	
Spars	1x2	9	in	47.5	0.02441	1.2	10.4		43.4	453	
Joining spar	1×3	1	in	47.5	0.04069	1.9	1.9		24.3	47	
								34.2			1482
Shelf											
Shelf	1/4" ply	1	in2	1444	0.00588	8.5	8.5		29.3	249	
Front frame	1x2	1	in	47.5	0.02441	1.2	1.2		44.1	51	
								9.6			300
Fenders											
Skin	1/8" ply	2	in2	328	0.00294	1.0	1.9		38	73	
Inner side	3/8" ply	2	in2	74	0.00881	0.7	1.3		39	51	
Outer side	1/4" ply	2	in2	147	0.00588	0.9	1.7		38	66	
Sundries		2				2.0	4.0		38	152	
								9.0			342
FITTINGS											
Body Fittings											
Windows	est	2	ea			4.0	8.0		58	464	
Door hinge	est	2	ea			0.5	1.0		70	70	
Door lock/handle	est	2	ea			1.0	2.0		49	98	
Door trim/seal	est	2	ea			1.0	2.0		58	116	
Taillights	est	2	ea			0.5	1.0		0	0	
License plate	est	1	ea			1.0	1.0		0	0	
Wiring	est	1	ea			3.0	3.0		55	165	
								18.0			913
Fit-out Items											
Mattress	est	1	ea			20.0	20.0		39	780	
Curtains/blinds	est	2	ea			1.0	2.0		58	116	
								22.0			896

OPTIONAL

Aluminium skin										
Sides	.032" Alum	2	in2	2526	0.00312	7.9	15.8	47.1	742	
Roof	.032" Alum	1	in2	6475	0.00312	20.2	20.2	46	929	
Edge trim	1x1/2	2	in2	176	0.02	3.5	7.0	50	352	
										2024
Foam insulation										
Sides	3/4" foam	2	in2	2526	0.00094	2.4	4.7	47.1	223	
Roof	3/4" foam	1	in2	6475	0.00094	6.1	6.1	46	279	
										502
11ga frame tubes										
Axle cross-member	deduct 2"x1"x14ga	1	in	48	-0.1333	-6.4	-6.4	41.5	-266	
	add 2"x1"x11ga	1	in	48	0.1883	9.0	9.0	41.5	375	
A-frame	deduct 2"x1"x14ga	2	in	66	-0.1333	-8.8	-17.6	73.3	-1290	
	add 2"x1"x11ga	2	in	66	0.1883	12.4	24.9	73.3	1822	
										642
Sidewall edge reinforcement										
Front reinf.	1/4" ply	2	in2	28.9	0.00588	0.2	0.3	57	19	
Rear reinf.	1/4" ply	2	in2	28.5	0.00588	0.2	0.3	19	6	
										26

Side Areas	A
Side, complete	2742
Door cutout	793
Side excl door cutout	1949
Door cutout	793
Window cutout	216
Door excl window cutout	577
Side, complete	2742
Window cutout	216
Side excl window cutout	2526

x	$A x$
48	131616
57	45201
44.3	86415
57	45201
58	12528
56.6	32673
48	131616
58	12528
47.1	119088

